
Public

SMART CONTRACT AUDIT REPORT

for

SYNFUTURES

Prepared By: Shuxiao Wang

Hangzhou, China
May 17, 2021

1/29 PeckShield Audit Report #: 2020-115

sxwang@peckshield.com

Public

Document Properties

Client SynFutures
Title Smart Contract Audit Report
Target SynFutures
Version 1.1
Author Xuxian Jiang
Auditors Huaguo Shi, Xudong Shao, Xuxian Jiang
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.1 May 17, 2021 Xuxian Jiang Final Release #1
1.0 December 18, 2020 Xuxian Jiang Final Release
1.0-rc1 December 15, 2020 Xuxian Jiang Release Candidate #1
0.3 December 7, 2020 Xuxian Jiang Add More Findings #2
0.2 December 5, 2020 Xuxian Jiang Add More Findings #1
0.1 December 3, 2020 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/29 PeckShield Audit Report #: 2020-115

Public

Contents

1 Introduction 4
1.1 About SynFutures . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Miscalculation of _alignExpiry() . 11
3.2 Quote Adjustment And Friday Alignment in Reader 13
3.3 Remove Unnecessary Admin Rights . 14
3.4 Improved Calculation of leftDays in depositAndInitPool() 15
3.5 Unchangeable Feeders After ChainlinkOracle Initialization 17
3.6 Inconsistency Between Documentation and Implementation 18
3.7 Improved transferFrom() in ShareToken . 20
3.8 Unused Code Removal . 23
3.9 Improved Sanity Checks For System Parameters . 24

4 Conclusion 27

References 28

3/29 PeckShield Audit Report #: 2020-115

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the SynFutures
protocol, we outline in the report our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About SynFutures

SynFutures is an open and decentralized derivatives platform that allows a variety of assets, including
Ethereum native, cross-chain and off-chain real world assets to be synthesized and freely traded. In
the first version of the contract, SynFutures will launch a digital asset futures market to introduce
(1) futures contract of arbitrary assets and expiration dates to be created by liquidity providers, (2)
Synthetic Automated Market Maker (sAMM), for market participants to provide one single digital
asset of a trading pair only and the smart contract to synthesize the other, and (3) Automated
Liquidator (ALQ), which reduces the entry barrier of liquidators and helps automate the liquidation
process. SynFutures presents an interesting addition of innovation to current DeFi ecosystem.

The basic information of SynFutures is as follows:

Table 1.1: Basic Information of SynFutures

Item Description
Target SynFuturesV1
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report May 17, 2021

In the following, we show the Git repository of reviewed files and the commit hash value used in

4/29 PeckShield Audit Report #: 2020-115

Public

this audit:

• https://github.com/SynFutures/synfutures-contract-v1 (798e63f)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/SynFutures/synfutures-contract-v1 (94e3721)

1.2 About PeckShield

PeckShield Inc. [14] is a leading blockchain security company with the goal of elevating the security,
privacy, and usability of the current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [13]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/29 PeckShield Audit Report #: 2020-115

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/29 PeckShield Audit Report #: 2020-115

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [12], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this audit does not give any warranties on finding all possible security issues of the given
smart contract(s), i.e., the evaluation result does not guarantee the nonexistence of any further
findings of security issues. As one audit-based assessment cannot be considered comprehensive, we
always recommend proceeding with several independent audits and a public bug bounty program to
ensure the security of smart contract(s). Last but not least, this security audit should not be used
as investment advice.

7/29 PeckShield Audit Report #: 2020-115

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/29 PeckShield Audit Report #: 2020-115

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the SynFutures implementation. During the first
phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 5

Informational 2

Total 9

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/29 PeckShield Audit Report #: 2020-115

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity
vulnerabilities, 5 low-severity vulnerabilities, 2 informational recommendations.

Table 2.1: Key Audit Findings of SynFutures Protocol

ID Severity Title Category Status
PVE-001 Medium Miscalculation of _alignExpiry() Numeric Errors Fixed
PVE-002 Low Quote Adjustment And Friday Alignment

in Reader
Business Logic Fixed

PVE-003 Medium Remove Unnecessary Admin Rights Security Features Mitigated
PVE-004 Low Improved Calculation of leftDays in de-

positAndInitPool()
Numeric Errors Fixed

PVE-005 Low Unchangeable Feeders After ChainlinkOr-
acle Initialization

Business Logic Fixed

PVE-006 Informational Inconsistency Between Documentation
and Implementation

Coding Practices Fixed

PVE-007 Low Improved transferFrom() in ShareToken Business Logic Fixed
PVE-008 Informational Unused Code Removal Coding Practices Fixed
PVE-009 Low Improved Sanity Checks For System Pa-

rameters
Coding Practices Fixed

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/29 PeckShield Audit Report #: 2020-115

Public

3 | Detailed Results

3.1 Miscalculation of _alignExpiry()

• ID: PVE-001

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Factory

• Category: Numeric Errors [11]

• CWE subcategory: CWE-190 [3]

Description

SynFutures aims to build a futures market with arbitrary asset and expiration date that can be
determined by liquidity providers. The proposed synthetic automated market maker (sAMM) model
allows for similar trading experience for futures margin trading. Meanwhile, for the same pair of base
and quote assets, different expiration date creates different futures contracts that however lead to
the provided liquidity scattered. To mitigate this issue, SynFutures pools the scattered liquidity by
aligning the expiry times of futures contracts to the corresponding 8:00am (UTC) on Friday of the
same week of the original expiry times.

To this end, the Factory contract provides a helper routine namely _alignExpiry(). For illustration,
we show below its full implementation. If the supported asset is configured for expiry alignment, it
adjusts the expiry time to be 08:00:00 Friday (UTC time) of the week the original expiry lies in.

124 f unc t i on _a l i g nExp i r y (u in t _expiry , Types . MarginParam memory param) i n t e r n a l view
re tu rn s (u in t e x p i r y) {

125 // solium -disable -next -line security/no-block -members
126 r equ i r e (_exp i ry > block . timestamp + 1 hours , "_alignExpiry: bad _expiry") ;
127 i f (param . a l i g nToF r i d a y) {// align to 08:00:00 Friday (UTC time) of the week

_expiry lies in
128 // block.timestamp is seconds since unix epoch 1970/01/01/00:00:00 , which is

00:00:00 Thursday
129 e x p i r y = (_exp i ry − 4 days) / 1 weeks ∗ 1 weeks + 4 days + 8 hours ;
130 } e l s e { // align to UTC 08:00:00 of the day _expiry lies in
131 e x p i r y = (_exp i ry) / 1 days ∗ 1 days + 8 hours ;
132 }

11/29 PeckShield Audit Report #: 2020-115

Public

133 // solium -disable -next -line security/no-block -members
134 r equ i r e (e x p i r y > block . timestamp + 1 hours , "_alignExpiry: bad _expiry") ;
135 }

Listing 3.1: Factory :: _alignExpiry()

However, our analysis shows that the aligned expiry is miscalculated. The original calculation of
expiry = (_expiry - 4 days)/ 1 weeks * 1 weeks + 4 days + 8 hours (line 129) forgets to adjust the
initial offset as the very first Unix epoch starts on Thursday. Therefore, the proper adjustment should
be the following: expiry = (_expiry + 3 days)/ 1 weeks * 1 weeks + 4 days + 8 hours - 3 days.

Recommendation Revise the _alignExpiry() logic to return the proper expiry date after
alignment. An example revision is shown below.

124 f unc t i on _a l i g nExp i r y (u in t _expiry , Types . MarginParam memory param) i n t e r n a l view
re tu rn s (u in t e x p i r y) {

125 // solium -disable -next -line security/no-block -members
126 r equ i r e (_exp i ry > block . timestamp + 1 hours , "_alignExpiry: bad _expiry") ;
127 i f (param . a l i g nToF r i d a y) {// align to 08:00:00 Friday (UTC time) of the week

_expiry lies in
128 // block.timestamp is seconds since unix epoch 1970/01/01/00:00:00 , which is

00:00:00 Thursday
129 e x p i r y = (_exp i ry + 3 days) / 1 weeks ∗ 1 weeks + 4 days + 8 hours − 3 days ;
130 } e l s e { // align to UTC 08:00:00 of the day _expiry lies in
131 e x p i r y = (_exp i ry) / 1 days ∗ 1 days + 8 hours ;
132 }
133 // solium -disable -next -line security/no-block -members
134 r equ i r e (e x p i r y > block . timestamp + 1 hours , "_alignExpiry: bad _expiry") ;
135 }

Listing 3.2: Factory :: _alignExpiry()

Status This issue has been fixed in this commit: cb7156f.

12/29 PeckShield Audit Report #: 2020-115

https://github.com/SynFutures/synfutures-contract-v1/commit/cb7156f4888aece3a8657ebc5a901604b498971b

Public

3.2 Quote Adjustment And Friday Alignment in Reader

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact:Low

• Target: Reader

• Category: Business Logic [10]

• CWE subcategory: CWE-841 [7]

Description

SynFutures is equipped with a Reader contract to expose its run-time states. In particular, it allows
external entities to query the current contract addresses of both AMM and Futures for a given pair of
base and quote assets as well as the associated expiry. It also enables the query of the details of a
running AMM, Futures, or a given account.

While examining various query handlers, we notice a specific one, i.e., getChainlinkContractAddresses
(). This specific handler takes factoryAddr, base, quote, and expiry as arguments and returns the
corresponding AMM and Futures. However, the current routine uses a hardcoded USDC as the quote
asset (line 35), instead of the given quote argument. Apparently, if the pair does not use USDC as the
quote asset, this routine returns the wrong information of AMM and Futures.

29 f unc t i on g e tCha i n l i n kCon t r a c tAdd r e s s e s (
30 address f a c to ryAddr , s t r i n g memory base , address quote , u in t e x p i r y
31) pub l i c view re tu rn s (address ammProxy , address f u t u r e sP r o x y) {
32 Fac to r y f a c t o r y = Fac to r y (f a c t o r yAdd r) ;

34 address o r a c l e = f a c t o r y . o r a c l e C o n t r o l l e r () . g e tCh a i n l i n kO r a c l e (base , quote) ;
35 bytes32 i n d e x = keccak256 (ab i . encodePacked (o r a c l e , f a c t o r y .USDC, e x p i r y)) ;
36 f u t u r e sP r o x y = f a c t o r y . p a i r s F o r F u t u r e s (i nd ex) ;
37 ammProxy = f a c t o r y . pairsForAmm (i ndex) ;
38 }

Listing 3.3: Reader:: getChainlinkContractAddresses ()

Recommendation Modify the getChainlinkContractAddresses() logic to use the given quote

argument. An example revision is shown below.

29 f unc t i on g e tCha i n l i n kCon t r a c tAdd r e s s e s (
30 address f a c to ryAddr , s t r i n g memory base , address quote , u in t e x p i r y
31) pub l i c view re tu rn s (address ammProxy , address f u t u r e sP r o x y) {
32 Fac to r y f a c t o r y = Fac to r y (f a c t o r yAdd r) ;

34 address o r a c l e = f a c t o r y . o r a c l e C o n t r o l l e r () . g e tCh a i n l i n kO r a c l e (base , quote) ;
35 bytes32 i n d e x = keccak256 (ab i . encodePacked (o r a c l e , quote , e x p i r y)) ;
36 f u t u r e sP r o x y = f a c t o r y . p a i r s F o r F u t u r e s (i nd ex) ;
37 ammProxy = f a c t o r y . pairsForAmm (i ndex) ;

13/29 PeckShield Audit Report #: 2020-115

Public

38 }

Listing 3.4: Reader:: getChainlinkContractAddresses ()

Status This issue has been fixed in this commit: cb7156f.

3.3 Remove Unnecessary Admin Rights

• ID: PVE-003

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [8]

• CWE subcategory: CWE-287 [4]

Description

In SynFutures, there is a privileged account, i.e., owner, that plays a critical role in not only governing
and regulating the system-wide operations (e.g., margin asset addition and parameter setting), but
also managing each trader’s account (and the balance directly determines the withdrawable assets
for each trader).

If we take a close look at the Storage contract, this specific contract takes a number of routines,
e.g., increaseAccountBalance(), decreaseAccountBalance(), and setSocialLossPerContract(). The first
two routines can be used to adjust the trader balance while the last one is used to directly set the
social loss for a specified side. These are privileged routines governed by the onlyOwner modifier.

80 f unc t i on s e t S o c i a l L o s sP e rC o n t r a c t (Types . S ide s i d e , i n t newVal) pub l i c onlyOwner
onlyEmergency {

81 r equ i r e (s i d e == Types . S ide .LONG s i d e == Types . S ide .SHORT, "unknown side") ;
82 s o c i a l L o s s P e r C o n t r a c t s [u in t (s i d e)] = newVal ;
83 emit Upda t eSoc i a l Lo s s (s i d e , newVal) ;
84 }
85
86 // Set cash balance of account in emergency by admin
87 f unc t i on i n c r e a s eAccoun tBa l an c e (address t r ad e r , u in t amount) pub l i c onlyOwner

onlyEmergency {
88 _updateAccountBalance (t r ad e r , amount . t o I n t 2 56 ()) ;
89 }
90
91 // Set cash balance of account in emergency by admin
92 f unc t i on dec r ea seAccountBa l ance (address t r ad e r , u in t amount) pub l i c onlyOwner

onlyEmergency {
93 _updateAccountBalance (t r ad e r , amount . t o I n t 2 56 () . neg ()) ;
94 }

Listing 3.5: Storage.sol

14/29 PeckShield Audit Report #: 2020-115

https://github.com/SynFutures/synfutures-contract-v1/commit/cb7156f4888aece3a8657ebc5a901604b498971b

Public

Also, the owner can set the states of futures contracts to be Emergency, which immediately
terminates the contracts with a given settle price.

As a mitigation, instead of having a single EOA account as the Owner, an alternative is to make
use of a multi-sig wallet. To further eliminate the administration key concern, it may be required
to transfer the role to a community-governed DAO. In the meantime, a timelock-based mechanism
might also be applicable for mitigation.

Recommendation Promptly transfer the Owner privilege to the intended DAO-like governance
contract. And activate the normal on-chain community-based governance life-cycle and ensure the
intended trustless nature and high-quality distributed governance.

Status This issue has been mitigated by removing the above-mentioned functions. Also, the
team plans to transfer the privilege to the intended DAO-like governance after the mainnet deployment
becomes stable and mature.

3.4 Improved Calculation of leftDays in depositAndInitPool()

• ID: PVE-004

• Severity: High

• Likelihood: High

• Impact: Medium

• Target: Amm

• Category: Numeric Errors [11]

• CWE subcategory: CWE-190 [3]

Description

In Section 3.3, we have examined the depositAndInitPool() routine and elaborate an issue with
manipulated index price. In this section, we focus on the same routine and analyze the enforcement
of the given initPrice.

The initPrice is provided by the first liquidity provider in setting up the initial mark price for the
intended futures contract. To ensure this initPrice falls in a proper price range, SynFutures has a
system-wide risk parameter, i.e., maxInitialDailyBasis. Based on the number of remaining days to
the expiry of the related futures contract, the protocol can compute the maximum allowed deviation
of initPrice.

To elaborate, we show below the code snippet of depositAndInitPool(). As mentioned earlier,
this routine is used by the very first liquidity provider to add liquidity into the pool.

201 // deposit margin and initialize the pool , margin token amount and leverage in 10^18
202 f unc t i on d e p o s i tAnd I n i t P o o l (u in t wadAmount , u in t i n i t P r i c e , u in t l e v e r a g e , u in t

d e a d l i n e) pub l i c payable {
203 r equ i r e (_getBlockTimestamp () <= dead l i n e , "deadline exceeded") ;

15/29 PeckShield Audit Report #: 2020-115

Public

205 r equ i r e (s t a t u s == Types . S t a tu s .NORMAL && _getBlockTimestamp () <= e x p i r y − 1
hours , "bad status") ;

206 r equ i r e (f u t u r e sP r o x y . getAccount (address (t h i s)) . p o s i t i o n == 0 , "pool not empty") ;
207 r equ i r e (wadAmount > 0 && i n i t P r i c e > 0 , "bad wadAmount/initial price") ;

209 u in t ONE = LibMathUnsigned .WAD() ;
210 Types . Param memory param = con f i g . paramete r () ;
211 // validate leverage range
212 r equ i r e (l e v e r a g e >= ONE && l e v e r a g e . wmul (_c2w(param . i n i t i a lM a r g i n R a t i o)) <= ONE,

"bad leverage") ;
213 {
214 u in t blockTime = _getBlockTimestamp () ;
215 // validate maxInitialDailyBasis
216 u in t p r i c e = i n d e xP r i c e () ; // initial price < index price +/- (days * max

daily basis)
217 u in t b a s i s = i n i t P r i c e > p r i c e ? (i n i t P r i c e − p r i c e) : (p r i c e − i n i t P r i c e) ;
218 u in t l e f tD a y s = (e x p i r y − blockTime) / 1 days + 1 ;
219 u in t maxBasis = p r i c e . wmul (_c2w(param . m a x I n i t i a l D a i l y B a s i s)) . mul (l e f tD a y s) ;
220 r equ i r e (b a s i s <= maxBasis , "bad initPrice") ;

222 // init markPriceState
223 r equ i r e (ma rkPr i c eS ta t e . lastMarkTime == 0 , "already initialized") ;
224 markPr i c eS ta t e . lastMarkTime = uint32 (b lockTime) ;
225 markPr i c eS ta t e . l a s t I n d e x P r i c e = uint112 (p r i c e) ;
226 markPr i c eS ta t e . l a s tEmaBas i s = int112 (i n i t P r i c e . t o I n t 2 56 () . sub (p r i c e . t o I n t 2 56

())) ;
227 }
228 // use truncated (probably) wadAmount returned by depositFor for later

calculation
229 wadAmount = f u t u r e sP r o x y . d e p o s i t F o r { va lue : msg . va lue } (msg . sender , wadAmount) ;

// deposit for trader

231 // wadAmount = price * size * 2 + price * size / leverage
232 // size = wadAmount / (2 * price + price / leverage)
233 // ONE <= leverage
234 u in t denominator = i n i t P r i c e . mul (2) . add (i n i t P r i c e . wdiv (l e v e r a g e)) ;
235 u in t s i z e = wadAmount . wdiv (denominator) ;
236 // to prevent precision error caused by rounding
237 i f (s i z e . wmul (denominator) > wadAmount) s i z e = s i z e . sub (1) ;

239 // trade with AMM and transfer margin
240 f u t u r e sP r o x y . t radeWithMarg inFor (msg . sender , Types . S ide .SHORT, i n i t P r i c e , s i z e ,

t rue) ;
241 _mint (msg . sender , s i z e) ;
242 // the calculation above already makes sure that both trader and amm’s accounts

are safe after trade
243 }

Listing 3.6: Amm::depositAndInitPool()

The related enforcement of initPrice occurs at line 220: require (basis <= maxBasis, "bad

initPrice"). The basis in essence is the computed difference of initPrice when compared with the

16/29 PeckShield Audit Report #: 2020-115

Public

current index price, while maxBasis is calculated as maxBasis = price.wmul(_c2w(param.maxInitialDailyBasis

)).mul(leftDays) (line 219). The maxInitialDailyBasis is the system-wide risk parameter that regu-
lates the maximum daily price deviation permitted by the protocol. Note the leftDays is computed as
leftDays = (expiry - blockTime)/ 1 days + 1 (line 218). There is an off-by-one bug in the leftDays

calculation. The correct one is leftDays = (expiry - blockTime - 1)/ 1 days + 1.

Recommendation Change current execution logic of depositAndInitPool() to properly calculate
leftDays in order to validate the given initPrice.

Status This issue has been fixed in this commit: 47e4398.

3.5 Unchangeable Feeders After ChainlinkOracle Initialization

• ID: PVE-005

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: OracleController

• Category: Business Logic [10]

• CWE subcategory: CWE-841 [7]

Description

SynFutures supports both Uniswap and Chainlink as its oracles. For a given pair of base and quote
assets, the OracleController contract provides two different methods to generate the requested oracle:
one method is newChainlinkOracle() with Chainlink price feeds and the another is newUniswapOracle()

from the built-in AMM price curve.
In the following, we examine the newChainlinkOracle() routine and shows its code snippet below.

Its execution logic is as follows: it firstly validates that the intended oracle has not been created (line
95) and the protocol allows its creation (line 96), then validates the presence of Chainlink feeder,
next instantiates a new ChainlinkOracle with the validated Chainlink feeder (line 106), and finally
emits the related event for the oracle creation (line 109).

94 f unc t i on newCha i n l i n kOrac l e (s t r i n g memory base , address quote) pub l i c r e tu rn s (
address) {

95 r equ i r e (c h a i n l i n kO r a c l e s [base] [quote] == address (0) , "newChainlinkOracle: oracle
already exists") ;

96 Types . MarginParam memory param = con f i g . marginsParam (quote) ;
97 r equ i r e (param . a l l owed , "newChainlinkOracle: unsupported quote") ;

99 address f e e d e r = c h a i n l i n k F e e d e r s [base] [quote] ;
100 r equ i r e (f e e d e r != address (0) , "newChainlinkOracle: no price feeder for base/

quote") ;

102 u in t dec ima l = ICh a i n l i n kAgg r e g a t o r (f e e d e r) . d e c ima l s () ;

17/29 PeckShield Audit Report #: 2020-115

https://github.com/SynFutures/synfutures-contract-v1/commit/47e43983f1850b06433ed525b5702ef85f4927ca

Public

103 r equ i r e (dec ima l <= 18 , "newChainlinkOracle: chainlink aggregator ’s decimal
exceeds 18") ;

104 u in t s c a l e r = 10∗∗(18 − dec ima l) ;

106 address o r a c l e = address (new Cha i n l i n kO r a c l e (f e ed e r , s c a l e r)) ;
107 c h a i n l i n kO r a c l e s [base] [quote] = o r a c l e ;

109 emit NewCha in l i nkOrac l e (base , quote , o r a c l e) ;
110 re tu rn o r a c l e ;
111 }

113 f unc t i on upda t eCha i n l i n kFe ed e r (s t r i n g memory base , address quote , address f e e d e r)
pub l i c onlyOwner {

114 c h a i n l i n k F e e d e r s [base] [quote] = f e e d e r ;
115 emit Upda t eCha i n l i nkFeede r (base , quote , f e e d e r) ;
116 }

Listing 3.7: OracleController :: newChainlinkOracle()

From the above execution logic, we notice that the Chainlink oracle relies on the presence of
an existing Chainlink feeder. Meanwhile, we also notice the presence of a updateChainlinkFeeder()

routine to update the Chainlink feeder. However, the updated Chainlink feeder has no effect on
already created Chainlink oracles.

Recommendation Revise the updateChainlinkFeeder() logic to ensure the absence of the given
Chainlink feeder. An example revision is shown below.

113 f unc t i on upda t eCha i n l i n kFe ed e r (s t r i n g memory base , address quote , address f e e d e r)
pub l i c onlyOwner {

114 r equ i r e (c h a i n l i n k F e e d e r s [base] [quote] == address (0) , "!feeder already exists")
115 c h a i n l i n k F e e d e r s [base] [quote] = f e e d e r ;
116 emit Upda t eCha i n l i nkFeede r (base , quote , f e e d e r) ;
117 }

Listing 3.8: OracleController :: updateChainlinkFeeder()

Status This issue has been fixed in this commit: 47e4398.

3.6 Inconsistency Between Documentation and Implementation

• ID: PVE-006

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple Contracts

• Category: Coding Practices [9]

• CWE subcategory: CWE-1041 [1]

18/29 PeckShield Audit Report #: 2020-115

https://github.com/SynFutures/synfutures-contract-v1/commit/47e43983f1850b06433ed525b5702ef85f4927ca

Public

Description

There are a few misleading comments embedded among lines of solidity code, which bring unnecessary
hurdles to understand and/or maintain the software.

Specifically, the Factory contract maintains the states of pairsIndex, pairsForAmm and pairsForFutures

. The pairsIndex array keeps all pair indexes, pairsForAmm records the mapping from a pair index
to the corresponding sAMM; and pairsForFutures represents the mapping from a pair index to the
corresponding futures contract.

In the following, we show their definitions (see the code snippet below). It comes to our attention
that the pair index is indicated as keccak[base|quote|oracle|expiry] (lines 29 − 31).

15 cont ract Fac to r y i s Ownable {
16 us ing Types f o r Types . MarginParam ;
17
18 bytes4 p r i v a t e constant _DECIMAL_SELECTOR = bytes4 (keccak256 (bytes ("decimals ()"))) ;
19 bytes4 p r i v a t e constant _SYMBOL_SELECTOR = bytes4 (keccak256 (bytes ("symbol ()"))) ;
20
21 address pub l i c immutable USDC;
22
23 I G l o b a l C o n f i g pub l i c c o n f i g ;
24 address pub l i c f u t u r e s L o g i c ;
25 address pub l i c uniswapAmmLogic ;
26 address pub l i c cha in l inkAmmLogic ;
27 I O r a c l e C o n t r o l l e r pub l i c o r a c l e C o n t r o l l e r ;
28
29 mapping (bytes32 => address) pub l i c pairsForAmm ; // keccak[basequoteoracleexpiry] –>

AmmProxymapping(bytes32 => address) public pairsForFutures; //
keccak[basequoteoracleexpiry] --> FuturesProxy

30
31 bytes32 [] pub l i c p a i r s I n d e x ; // book all pairs index: keccak[basequoteoracleexpiry]...

Listing 3.9: Factory . sol

However, if we pay attention to the actual _createAndBookProxies() routine that computes the in-
dex (line 108), the proper index is keccak256(abi.encodePacked(oracle, quote, alignedExpiry)), which
is inconsistent with the above definition.

105 f unc t i on _createAndBookProx ies (
106 s t r i n g memory name , address quote , address o r a c l e , u in t a l i g n e dE x p i r y
107) i n t e r n a l r e tu rn s (FuturesProxy , AmmProxy) {
108 bytes32 i n d e x = keccak256 (ab i . encodePacked (o r a c l e , quote , a l i g n e dE x p i r y)) ;
109 r equ i r e (pairsForAmm [i ndex] == address (0) && pa i r s F o r F u t u r e s [i nd ex] == address (0)

,
110 "_createAndBookProxies: pair already exists") ;
111
112 u int8 dec ima l = _getDecimal (quote) ;
113 Futu re sProxy f u t u r e sP r o x y = new Futu re sProxy (f u t u r e s L o g i c , address (c o n f i g) ,

quote , dec ima l) ;
114 address ammLogic = (IO r a c l e (o r a c l e) . c l a s s () == Types . Orac l e .UNISWAP) ?

uniswapAmmLogic : cha in l inkAmmLogic ;

19/29 PeckShield Audit Report #: 2020-115

Public

115 AmmProxy ammProxy = new AmmProxy(ammLogic , address (c o n f i g) , address (f u t u r e sP r o x y
) , o r a c l e , a l i g n e dExp i r y , name) ;

116
117 p a i r s F o r F u t u r e s [i nd ex] = address (f u t u r e sP r o x y) ;
118 pairsForAmm [i ndex] = address (ammProxy) ;
119 p a i r s I n d e x . push (i nde x) ;
120
121 re tu rn (f u t u r e sP roxy , ammProxy) ;
122 }

Listing 3.10: Factory :: _createAndBookProxies()

Recommendation Ensure the consistency between documents (including embedded comments)
and implementation.

Status This issue has been fixed in this commit: 47e4398.

3.7 Improved transferFrom() in ShareToken

• ID: PVE-007

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ShareToken

• Category: Business Logic [10]

• CWE subcategory: CWE-754 [6]

Description

In SynFutures, the AMM or more precisely ShareToken is an ERC20-compliant pool token that represent
the ownership of liquidity providers in the shared pool. Accordingly, there is a need for the pool
token contract implementation, i.e., ShareToken, to follow the ERC20 specification. In the following,
we examine the list of API functions defined by the ERC20 specification and validate whether there
exist any inconsistency or incompatibility in the implementation or the inherent business logic.

Our analysis shows that there is no ERC20 inconsistency or incompatibility issue found in the
audited SynFutures. In the following two tables, we outline the respective list of basic view-only

functions (Table 3.1) and key state-changing functions (Table 3.2) according to the widely-adopted
ERC20 specification.

Meanwhile, we notice in the transferFrom() routine, there is a common practice that is miss-
ing but widely used in other ERC20 contracts. Specifically, when msg.sender = _from, the current
transferFrom() implementation disallows the token transfer if msg.sender has not explicitly allows
spending from herself yet. A common practice will whitelist this special case and allow transferFrom

() if msg.sender = _from even there is no allowance specified.

20/29 PeckShield Audit Report #: 2020-115

https://github.com/SynFutures/synfutures-contract-v1/commit/47e43983f1850b06433ed525b5702ef85f4927ca

Public

Table 3.1: Basic View-Only Functions Defined in The ERC20 Specification

Item Description Status

name() Is declared as a public view function ✓

Returns a string, for example “Tether USD” ✓

symbol() Is declared as a public view function ✓

Returns the symbol by which the token contract should be known, for
example “USDT”. It is usually 3 or 4 characters in length

✓

decimals() Is declared as a public view function ✓

Returns decimals, which refers to how divisible a token can be, from 0
(not at all divisible) to 18 (pretty much continuous) and even higher if
required

✓

totalSupply() Is declared as a public view function ✓

Returns the number of total supplied tokens, including the total minted
tokens (minus the total burned tokens) ever since the deployment

✓

balanceOf() Is declared as a public view function ✓

Anyone can query any address’ balance, as all data on the blockchain is
public

✓

allowance() Is declared as a public view function ✓

Returns the amount which the spender is still allowed to withdraw from
the owner

✓

53 f unc t i on t r a n s f e rF r om (address from , address to , u in t va lue) ex te rna l r e tu rn s (bool)
{

54 i f (a l l owance [from] [msg . sender] != u in t (−1)) {
55 a l l owance [from] [msg . sender] = a l l owance [from] [msg . sender] . sub (va lue) ;
56 }
57 _t r an s f e r (from , to , va lue) ;
58 re tu rn t rue ;
59 }

Listing 3.11: ShareToken.sol

Recommendation Improve the transferFrom() logic by considering the special case when
msg.sender = _from. In the meantime, consider the support of permit() (in EIP-2612) for better
integration and usability.

Status This issue has been fixed in this commit: 47e4398.

21/29 PeckShield Audit Report #: 2020-115

https://github.com/SynFutures/synfutures-contract-v1/commit/47e43983f1850b06433ed525b5702ef85f4927ca

Public

Table 3.2: Key State-Changing Functions Defined in The ERC20 Specification

Item Description Status

transfer()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the caller does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring to zero address ✓

transferFrom()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the spender does not have enough token allowances to spend ✓

Updates the spender’s token allowances when tokens are transferred suc-
cessfully

✓

Reverts if the from address does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring from zero address ✓

Reverts while transferring to zero address ✓

approve()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token approval status ✓

Emits Approval() event when tokens are approved successfully ✓

Reverts while approving to zero address ✓

Transfer() event
Is emitted when tokens are transferred, including zero value transfers ✓

Is emitted with the from address set to address(0x0) when new tokens
are generated

✓

Approve() event Is emitted on any successful call to approve() ✓

22/29 PeckShield Audit Report #: 2020-115

Public

3.8 Unused Code Removal

• ID: PVE-008

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: LibMathSigned, FuturesProxy

• Category: Coding Practices [9]

• CWE subcategory: CWE-563 [5]

Description

SynFutures makes good use of a number of reference contracts, such as ERC20, Math, SafeMath,
SignedSafeMath, and SafeCast, to facilitate its code implementation and organization. For example,
the Account smart contract has so far imported at least five reference contracts. However, we observe
the inclusion of certain unused code or the presence of unnecessary redundancies that can be safely
removed.

For example, if we examine closely the LibMathSigned contract (see the code snippet below), there
are a number of constants that are defined, but not used. Specifically, the following constants are not
used in the current code base: FIXED_DIGITS, FIXED_1, FIXED_E, LONGER_DIGITS, LONGER_FIXED_LOG_E_1_5,
LONGER_FIXED_1, and LONGER_FIXED_LOG_E_10.

10 l i b r a r y LibMathSigned {
11 us ing SignedSafeMath f o r i n t ;
12
13 i n t p r i v a t e constant _WAD = 10 ∗∗ 18 ;
14 i n t p r i v a t e constant _INT256_MIN = −2 ∗∗ 255 ;
15
16 u int8 p r i v a t e constant FIXED_DIGITS = 18 ;
17 i n t p r i v a t e constant FIXED_1 = 10 ∗∗ 18 ;
18 i n t p r i v a t e constant FIXED_E = 2718281828459045235;
19 u int8 p r i v a t e constant LONGER_DIGITS = 36 ;
20 i n t p r i v a t e constant LONGER_FIXED_LOG_E_1_5 = 405465108108164381978013115464349137;
21 i n t p r i v a t e constant LONGER_FIXED_1 = 10 ∗∗ 36 ;
22 i n t p r i v a t e constant LONGER_FIXED_LOG_E_10 = 2302585092994045684017991454684364208;
23 . . .
24 }

Listing 3.12: LibMathSigned.sol

In the meantime, the setAmm() routine in FuturesProxy is also unnecessary as the fallback()

routine is already in place for the same result.

Recommendation Remove the unused constants and the redundant setAmm() routine in
FuturesProxy.

Status This issue has been fixed in this commit: 47e4398.

23/29 PeckShield Audit Report #: 2020-115

https://github.com/SynFutures/synfutures-contract-v1/commit/47e43983f1850b06433ed525b5702ef85f4927ca

Public

3.9 Improved Sanity Checks For System Parameters

• ID: PVE-009

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: GlobalConfig

• Category: Coding Practices [9]

• CWE subcategory: CWE-1126 [2]

Description

DeFi protocols typically have a number of system-wide parameters that can be dynamically configured
on demand. The SynFutures protocol is no exception. Specifically, if we examine the GlobalConfig

contract, it has defined the system-wide risk parameters with the type: Types.Param. This type
consolidates all system-wide risk parameters, as shown below.

65 s t r u c t Param { // only takes 1 slot
66 uint32 emaTimeConstant ; // in seconds , max 86400
67 // all ratios are less than 1, and is scaled by 10000, e.g. 0.01 --> 100, 0.2

--> 2000
68 uint16 poo lFeeRa t i o ;
69 uint16 poo lDevFeeRat io ;
70 // maximum price dislocation in a single block for either direction from the mid

price at the start of the current block
71 // this serves as a speed limit of price move for the AMM and protects the

system from attacks involving distorting the market with in the same block
72 // a trade would be reverted if it result in a price move of this block

breaching this limit
73 uint16 maxPr i c eS l i ppageRa t i o ;
74 // maximum deviation of initial price to spot index per day to limit the initial

price for AMM in a reasonable range
75 uint16 ma x I n i t i a l D a i l y B a s i s ; // initPrice -

indexPrice < indexPrice * days * maxInitialDailyBasis
76 // maximum open interest ratio of the entire market for a single user(address)

to prevent concentration of risk in a single account
77 // when a user’s account has high open interest ratio than this limit , the user

can only execute trades to reduce position but not increase position
78 // this limit does not apply to the action of LP adding liquidity to the AMM
79 // but if a LP’s position breaches the limit after adding liquidity to the AMM ,

they cannot increase their position further
80 uint16 maxUse rTradeOpen In te r e s tRat i o ;
81 // minimum open interest ratio of the entire market for the AMM to prevent a

drain of liquidity
82 // the AMM needs to maintain certain level of inventory to prevent large

slippages as every user can only trade with the AMM
83 // this limit applies to both users buying from the AMM and LPs removing

liquidity
84 uint16 minAmmOpenInterestRat io ;
85 // maximum spot index change from oracle that can be accepted since the last

update

24/29 PeckShield Audit Report #: 2020-115

Public

86 // as mark price are updated at most once per block this serves as a speed limit
of the mark price

87 // and protects the system from attacks involving distorting the underlying
oracle in a short period of time

88 uint16 maxSpot IndexChangePerSecondRat io ;
89 uint16 i n i t i a lM a r g i n R a t i o ;
90 uint16 maintenanceMarg inRat io ;
91 // used when a liquidated account is already bankrupt and thus no remaining

maintenance margin can be used to reward the liquidator
92 // the reward would be withdraw from insurance fund in this case to keep

liquidators motivated
93 uint16 bank rup t c yL i qu i da to rRewa rdRa t i o ;
94 uint16 i n su rancePremiumRat io ;
95 }

Listing 3.13: LibTypes::Param

These parameters define various aspects of the protocol operation and maintenance and need
to exercise extra care when configuring or updating them. Our analysis shows the update logic on
these parameters can be improved by applying more rigorous sanity checks. Based on the current
implementation, certain corner cases may lead to an undesirable consequence. For example, an
unlikely mis-configuration of maxPriceSlippageRatio may allow unreasonably large slippage for the
futures trades.

To elaborate, we show below its code snippet of setParameter(). This routine updates various pa-
rameters defined in Types.Param. However, they can be improved to validate that the given arguments.
For example, _minAmmOpenInterestRatio can be no more than 5% and _maxUserTradeOpenInterestRatio

can be restrictive as well in the range of [5% − 10%].
65 f unc t i on s e tPa ramete r (bytes32 key , u in t va lue) pub l i c onlyOwner {
66 i f (key == "emaTimeConstant") {
67 r equ i r e (va lue <= 86400 , "emaTimeConstant cannot exceed 86400") ;
68 paramete r . emaTimeConstant = va lue . t oU in t32 () ;
69 } e l s e {
70 r equ i r e (va lue < 10000 , "ratio must < 1") ;
71 uint16 r a t i o = uint16 (va lue) ; // no need to user .toUint16 ()
72
73 i f (key == "poolFeeRatio") {
74 paramete r . poo lFe eRa t i o = r a t i o ;
75 } e l s e i f (key == "poolDevFeeRatio") {
76 paramete r . poo lDevFeeRat io = r a t i o ;
77 } e l s e i f (key == "maxPriceSlippageRatio") {
78 paramete r . maxP r i c eS l i ppageRa t i o = r a t i o ;
79 } e l s e i f (key == "maxInitialDailyBasis") {
80 paramete r . m a x I n i t i a l D a i l y B a s i s = r a t i o ;
81 } e l s e i f (key == "maxUserTradeOpenInterestRatio") {
82 paramete r . maxUse rTradeOpen In te r e s tRat i o = r a t i o ;
83 } e l s e i f (key == "minAmmOpenInterestRatio") {
84 paramete r . minAmmOpenInterestRat io = r a t i o ;
85 } e l s e i f (key == "maxSpotIndexChangePerSecondRatio") {

25/29 PeckShield Audit Report #: 2020-115

Public

86 paramete r . maxSpot IndexChangePerSecondRat io = r a t i o ;
87 } e l s e i f (key == "initialMarginRatio") {
88 r equ i r e (paramete r . ma intenanceMarg inRat io < r a t i o , "require mm < im") ;
89 paramete r . i n i t i a lM a r g i n R a t i o = r a t i o ;
90 } e l s e i f (key == "maintenanceMarginRatio") {
91 r equ i r e (paramete r . i n su rancePremiumRat io < r a t i o , "require pfr < mm") ;
92 r equ i r e (r a t i o < paramete r . i n i t i a lM a r g i n R a t i o , "require mm < im") ;
93 paramete r . ma intenanceMarg inRat io = r a t i o ;
94 } e l s e i f (key == "insurancePremiumRatio") {
95 r equ i r e (r a t i o < paramete r . ma intenanceMarg inRat io , "require ip < mm") ;
96 r equ i r e (paramete r . b ank rup t c yL i qu i da to rRewa rdRa t i o < r a t i o , "require blr

< ip") ;
97 paramete r . i n su rancePremiumRat io = r a t i o ;
98 } e l s e i f (key == "bankruptcyLiquidatorRewardRatio") {
99 r equ i r e (r a t i o < paramete r . in surancePremiumRat io , "require blr < ip") ;

100 paramete r . b ank rup t c yL i qu i da to rRewa rdRa t i o = r a t i o ;
101 } e l s e {
102 r e ve r t ("key not exists") ;
103 }
104 }
105 emit UpdateParameter (key , va lue) ;
106 }

Listing 3.14: GlobalConfig :: setParameter()

Recommendation Validate any changes regarding these system-wide parameters to ensure they
fall in an appropriate range. If necessary, also consider emitting relevant events for their changes.

Status This issue has been fixed in this commit: dd0f132.

26/29 PeckShield Audit Report #: 2020-115

https://github.com/SynFutures/synfutures-contract-v1/commit/dd0f1323719785e6613a5f0c2c4744b0af562fbf

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of SynFutures, an open and decen-
tralized derivatives platform that allows a variety of assets, including Ethereum native, cross-chain
and off-chain real world assets to be synthesized and freely traded. The system presents a clean
and consistent design that makes it a distinctive and valuable addition of innovation to current DeFi
ecosystem. The current code base is well structured and neatly organized. Those identified issues
are promptly confirmed and fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

27/29 PeckShield Audit Report #: 2020-115

Public

References

[1] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[2] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[3] MITRE. CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/definitions/

190.html.

[4] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[5] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[6] MITRE. CWE-754: Improper Check for Unusual or Exceptional Conditions. https://cwe.mitre.

org/data/definitions/754.html.

[7] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[8] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[9] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

28/29 PeckShield Audit Report #: 2020-115

https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html

Public

[10] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[11] MITRE. CWE CATEGORY: Numeric Errors. https://cwe.mitre.org/data/definitions/189.html.

[12] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[13] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[14] PeckShield. PeckShield Inc. https://www.peckshield.com.

29/29 PeckShield Audit Report #: 2020-115

https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About SynFutures
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Miscalculation of _alignExpiry()
	Quote Adjustment And Friday Alignment in Reader
	Remove Unnecessary Admin Rights
	Improved Calculation of leftDays in depositAndInitPool()
	Unchangeable Feeders After ChainlinkOracle Initialization
	Inconsistency Between Documentation and Implementation
	Improved transferFrom() in ShareToken
	Unused Code Removal
	Improved Sanity Checks For System Parameters

	Conclusion
	References

