
Public

SMART CONTRACT AUDIT REPORT

for

SynFutures V2

Prepared By: Xiaomi Huang

PeckShield
July 1, 2022

1/21 PeckShield Audit Report #: 2022-240

contact@peckshield.com

Public

Document Properties

Client SynFutures
Title Smart Contract Audit Report
Target SynFutures V2
Version 1.0
Author Shulin Bie
Auditors Shulin Bie, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 July 1, 2022 Shulin Bie Final Release
1.0-rc June 16, 2022 Shulin Bie Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/21 PeckShield Audit Report #: 2022-240

Public

Contents

1 Introduction 4
1.1 About SynFutures V2 . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Incompatibility With Deflationary/Rebasing Tokens 11
3.2 Accommodation of Non-ERC20-Compliant Tokens 12
3.3 Suggested Addition Of rescueToken() To SynFuturesV2Underlying 15
3.4 Suggested Reentrancy Protection In Current Implementation 16
3.5 Trust Issue Of Admin Keys . 17

4 Conclusion 19

References 20

3/21 PeckShield Audit Report #: 2022-240

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of the
SynFutures V2 protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About SynFutures V2

SynFutures V2 is a decentralized derivatives platform. In comparison to SynFutures V1, SynFutures

V2 provides a more streamlined, easier-to-navigate user experience for both traders and liquidity
providers, as well as more trading products and features designed with increased capital efficiency.
For traders, SynFutures V2 introduces Perpetual Futures, which is a never-ending futures contract
with native permissionless listing, guaranteed price convergence to spot index, and a forward-looking
funding mechanism. For LPs, SynFutures V2 will be the first AMM-based derivatives protocol to
natively incorporate ranged liquidity provision and limit orders, in addition to the vanilla AMM
liquidity provision.

Table 1.1: Basic Information of SynFutures V2

Item Description
Target SynFutures V2
Type EVM Smart Contract

Language Solidity
Audit Method Whitebox

Latest Audit Report July 1, 2022

In the following, we show the Git repository of reviewed files and the commit hash values used

4/21 PeckShield Audit Report #: 2022-240

Public

in this audit.

• https://github.com/SynFutures/v2-contracts.git (d6df565)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/SynFutures/v2-contracts.git (ff28a81)

1.2 About PeckShield

PeckShield Inc. [12] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [11]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/21 PeckShield Audit Report #: 2022-240

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/21 PeckShield Audit Report #: 2022-240

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [10], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/21 PeckShield Audit Report #: 2022-240

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/21 PeckShield Audit Report #: 2022-240

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the SynFutures V2 implementation. During the
first phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 3

Undetermined 1

Total 5

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/21 PeckShield Audit Report #: 2022-240

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability, 3 low-severity vulnerabilities, and 1 undetermined issue.

Table 2.1: Key SynFutures V2 Audit Findings

ID Severity Title Category Status
PVE-001 Low Incompatibility With Deflation-

ary/Rebasing Tokens
Business Logic Fixed

PVE-002 Low Accommodation Of Non-ERC20-
Compliant Tokens

Coding Practices Fixed

PVE-003 Low Suggested Addition Of rescueTo-
ken() To SynFuturesV2Underlying

Coding Practices Confirmed

PVE-004 Undetermined Suggested Reentrancy Protection In
Current Implementation

Time and State Fixed

PVE-005 Medium Trust Issue Of Admin Keys Security Features Confirmed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/21 PeckShield Audit Report #: 2022-240

Public

3 | Detailed Results

3.1 Incompatibility With Deflationary/Rebasing Tokens

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: SynFuturesV2Router

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [5]

Description

In the SynFutures V2 implementation, the SynFuturesV2Router contract is one of the main entries for
interaction with users. In particular, one entry routine, i.e., deposit(), accepts the deposits of the
supported assets. While examining its logic, we observe the incoming token (i.e., quoteInfo.quote)
is transferred to the SynFuturesV2Router contract and then transferred to the SynFuturesV2Underlying

contract. This is reasonable under the assumption that these transfers will always result in full
transfer. Otherwise, the transaction will be reverted.

197 function deposit(address underlying , address trader , uint amount) public payable
nonReentrant {

198 Types.QuoteInfo memory quoteInfo = IUnderlying(underlying).quoteInfo ();
199 _deposit(underlying , quoteInfo , trader , amount);
200 return;
201 }
202
203 function _deposit(
204 address underlying , Types.QuoteInfo memory quoteInfo , address trader , uint

amount
205) internal returns (uint) {
206 require(msg.value == 0, "invalid msg.value");
207 uint tokenAmount = amount / quoteInfo.scaler;// 10**(18 - token decimals)
208 IERC20(quoteInfo.quote).safeTransferFrom(msg.sender , address(this), tokenAmount)

;
209
210 amount = tokenAmount * quoteInfo.scaler;
211 IUnderlying(underlying).deposit(trader , amount);

11/21 PeckShield Audit Report #: 2022-240

Public

212 return amount;
213 }

Listing 3.1: SynFuturesV2Router::deposit()

However, there exist other ERC20 tokens that may make certain customizations to their ERC20
contracts. One type of these tokens is deflationary tokens that charge certain fee for every transfer()

or transferFrom(). (Another type is rebasing tokens such as YAM.) As a result, this may not meet the
assumption behind these routines related to token transfer.

One possible mitigation is to measure the asset change right before and after the asset-transferring
routines. In other words, instead of bluntly assuming the amount parameter in transfer() or
transferFrom() will always result in full transfer, we need to ensure the increased or decreased amount
in the SynFuturesV2Router contract before and after the transfer() or transferFrom() is expected and
aligned well with our operation. Though these additional checks cost additional gas usage, we con-
sider they are necessary to deal with deflationary tokens or other customized ones if their support is
deemed necessary.

Another mitigation is to regulate the set of ERC20 tokens that are permitted into SynFutures V2.
In SynFutures V2 protocol, it is indeed possible to effectively regulate the set of tokens that can be
supported. Keep in mind that there exist certain assets (e.g., USDT) that may have control switches
that can be dynamically exercised to suddenly become one.

Recommendation If current codebase needs to support possible deflationary tokens, it is better
to check the balance before and after the transfer()/transferFrom() call to ensure the book-keeping
amount is accurate. This support may bring additional gas cost. Also, keep in mind that certain
tokens may not be deflationary for the time being. However, they could have a control switch that
can be exercised to turn them into deflationary tokens. One example is the widely-adopted USDT.

Status The issue has been addressed by the following commit: 2fe40d9.

3.2 Accommodation of Non-ERC20-Compliant Tokens

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: SynFuturesV2Router

• Category: Coding Practices [8]

• CWE subcategory: CWE-1126 [2]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine

12/21 PeckShield Audit Report #: 2022-240

https://github.com/SynFutures/v2-contracts/commit/2fe40d98e927d0d1184296d627d0c08636fe1f98

Public

the approve() routine and analyze possible idiosyncrasies from current widely-used token contracts.
In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related code
snippet below.

194 /**
195 * @dev Approve the passed address to spend the specified amount of tokens on behalf

of msg.sender.
196 * @param _spender The address which will spend the funds.
197 * @param _value The amount of tokens to be spent.
198 */
199 f unc t i on approve (address _spender , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {

201 // To change the approve amount you first have to reduce the addresses ‘
202 // allowance to zero by calling ‘approve(_spender , 0)‘ if it is not
203 // already 0 to mitigate the race condition described here:
204 // https :// github.com/ethereum/EIPs/issues /20# issuecomment -263524729
205 r equ i r e (! ((_value != 0) && (a l l owed [msg . sender] [_spender] != 0))) ;

207 a l l owed [msg . sender] [_spender] = _value ;
208 Approva l (msg . sender , _spender , _value) ;
209 }

Listing 3.2: USDT Token Contract

It is important to note that the approve() function does not have a return value. However, the
IERC20 interface has defined the following approve() interface with a bool return value: function

approve(address spender, uint256 amount)external returns (bool). As a result, the call to approve()

may expect a return value. With the lack of return value of USDT’s approve(), the call will be
unfortunately reverted.

Because of that, a normal call to approve() is suggested to use the safe version, i.e., safeApprove
(). In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful.

In the following, we show the internal _createUnderlying() routine in the SynFuturesV2Router

contract. If the USDT token is supported as quoteInfo.quote, the unsafe version of IERC20(quoteInfo

.quote).approve(underlying, LibMathUnsigned.POSITIVE_INT256_MAX()) (line 142) may revert as there
is no return value in the USDT token contract’s approve() implementation (but the IERC20 interface
expects a return value)!

111 function _createUnderlying(
112 string calldata marketType , bytes calldata deployData , bytes calldata

initializeData , bool withNativeToken
113) internal returns (address) {
114 address market = markets[marketType];
115 require(market != address (0), "unknown market");
116 address underlying;
117 {

13/21 PeckShield Audit Report #: 2022-240

Public

118 bytes32 index;
119 address expectedUnderlying;
120 // deployData varies as market , but should always contains the expected

deployed pair address(which is
121 // used as the feeders ’ mapping key), to check the deployed one use the

correct feeder.
122 (parameters , index , expectedUnderlying) = IMarket(market).newUnderlying(

deployData);
123 // check whether the same pair exists
124 require(underlyings[index] == address (0), "underlying exists");

126 address beacon = beacons[marketType];
127 underlying = address(new SynFuturesV2UnderlyingProxy{salt : index}(beacon));
128 // check whether the pair deployed is the same as specified in deployData
129 require(underlying == expectedUnderlying , "underlying addr mismatch");

131 delete parameters;
132 underlyings[index] = underlying;
133 underlyingsIndex.push(index);

135 IObserver(observer).addUnderlying(underlying);
136 }

138 Types.QuoteInfo memory quoteInfo = IUnderlying(underlying).quoteInfo ();
139 {
140 (uint amount) = abi.decode(initializeData , (uint));
141 // approve underlying as underlying is created
142 IERC20(quoteInfo.quote).approve(underlying , LibMathUnsigned.

POSITIVE_INT256_MAX ());
143 ...
144 }

146 ...
147 }

Listing 3.3: SynFuturesV2Router::_createUnderlying()

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve().

Status The issue has been addressed by the following commit: 2fe40d9.

14/21 PeckShield Audit Report #: 2022-240

https://github.com/SynFutures/v2-contracts/commit/2fe40d98e927d0d1184296d627d0c08636fe1f98

Public

3.3 Suggested Addition Of rescueToken() To
SynFuturesV2Underlying

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: SynFuturesV2Underlying

• Category: Coding Practices [8]

• CWE subcategory: CWE-1099 [1]

Description

By design, the SynFutures V2 protocol supports multiple SynFuturesV2Underlying contracts and holds
various types of underlying tokens. From past experience with current popular DeFi protocols, e.g.,
YFI/Curve, we notice that there is always non-trivial possibilities that non-related tokens may be
accidentally sent to the contract(s). To avoid unnecessary loss of protocol users, we suggest to add
the support of rescuing remaining tokens. This is a design choice for the benefit of protocol users.

Recommendation Add the support of rescuing remaining tokens in SynFuturesV2Underlying.
An example addition is shown below:

function rescueToken(address _token , address _to , uint256 _amount) external
onlyOwner {
require(_token != quoteInfo.quote , "Should not withdraw staking Token");
IERC20(_token).safeTransfer(_to , _amount);
emit Recovered(_token , _to , _amount);

}

Listing 3.4: SynFuturesV2Underlying::rescueToken()

Status The issue has been confirmed by the team.

15/21 PeckShield Audit Report #: 2022-240

Public

3.4 Suggested Reentrancy Protection In Current
Implementation

• ID: PVE-004

• Severity: Undetermined

• Likelihood: Undetermined

• Impact: Undetermined

• Target: SynFuturesV2Router/SynFuturesV2Underlying

• Category: Time and State [7]

• CWE subcategory: CWE-362 [4]

Description

In the SynFuturesV2Router contract, we notice the deposit() routine is used to deposit the supported
assets into the SynFutures V2 protocol, and the trade() routine is used to buy Long or Short positions.
While examining their logic, we notice the deposit() routine is under the reentrancy protection,
however, the trade() routine is not.

To elaborate, we show below the related code snippet of the SynFuturesV2Router contract. Within
the internal _deposit() routine (which is called inside the deposit() routine), we notice IERC20(

quoteInfo.quote).safeTransferFrom(msg.sender, address(this), tokenAmount) (line 208) is called to
transfer the token into the SynFuturesV2Router contract. If the quoteInfo.quote faithfully implements
the ERC777-like standard, then the trade() routine is exposed to potential reentrancy vulnerability
and this risk needs to be properly mitigated. Although we also do not know how a malicious actor can
exploit this vulnerability to earn profit. After internal discussion, we consider it is necessary to bring
this vulnerability up to the team. We suggest to use the ReentrancyGuard::nonReentrant modifier to
protect all the public routines at the whole protocol level.

187 function trade(address underlying , uint expiry , int size , uint limitPrice , uint
deadline) public payable {

188 IUnderlying(underlying).trade(msg.sender , expiry , size , limitPrice , deadline);
189 }
190
191 ...
192
193 function deposit(address underlying , address trader , uint amount) public payable

nonReentrant {
194 Types.QuoteInfo memory quoteInfo = IUnderlying(underlying).quoteInfo ();
195 _deposit(underlying , quoteInfo , trader , amount);
196 return;
197 }
198
199 ...
200
201

16/21 PeckShield Audit Report #: 2022-240

Public

202
203 function _deposit(
204 address underlying , Types.QuoteInfo memory quoteInfo , address trader , uint

amount
205) internal returns (uint) {
206 require(msg.value == 0, "invalid msg.value");
207 uint tokenAmount = amount / quoteInfo.scaler;// 10**(18 - token decimals)
208 IERC20(quoteInfo.quote).safeTransferFrom(msg.sender , address(this), tokenAmount)

;
209
210 amount = tokenAmount * quoteInfo.scaler;
211 IUnderlying(underlying).deposit(trader , amount);
212 return amount;
213 }

Listing 3.5: SynFuturesV2Router::trade()&&deposit()

Recommendation Apply the non-reentrancy protection in all public routines.

Status The issue has been addressed by the following commit: 72e9f18.

3.5 Trust Issue Of Admin Keys

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [6]

• CWE subcategory: CWE-287 [3]

Description

In the SynFutures V2 protocol, there is a privileged owner account that plays a critical role in governing
and regulating the protocol-wide operations (e.g., configuring the price oracle related parameters). In
the following, we show the representative functions potentially affected by the privilege of the owner

account.

305 function setQuoteParam(address _quote , Types.QuoteParam calldata _param) public
onlyOwner {

306 quotes[_quote] = _param;
307 emit SetQuoteParam(_quote , _param);
308 }
309
310 function setUnderlyingInfo(address _underlying , UnderlyingInfo calldata _info)

public onlyOwner {
311 _setUnderlyingInfo(_underlying , _info);
312 }
313

17/21 PeckShield Audit Report #: 2022-240

https://github.com/SynFutures/v2-contracts/commit/72e9f18224394e53e45447bc6aefb052eb9d7a47

Public

314 function _setUnderlyingInfo(address _underlying , UnderlyingInfo memory _info)
internal {

315 require(_info.underlyingType <= 3, "unsupported underlyingType");
316 require(address(_info.feeder.aggregator0) != address (0), "invalid feeder");
317 underlyingsInfo[_underlying] = _info;
318 emit SetUnderlyingInfo(_underlying , _info);
319 }

Listing 3.6: ChainlinkMarket

We emphasize that the privilege assignment may be necessary and consistent with the protocol
design. However, it is worrisome if the owner is not governed by a DAO-like structure. Note that a
compromised account would allow the attacker to modify a number of sensitive system parameters,
which directly undermines the assumption of the protocol design.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status The issue has been confirmed by the team.

18/21 PeckShield Audit Report #: 2022-240

Public

4 | Conclusion

In this audit, we have analyzed the SynFutures V2 design and implementation. SynFutures V2 is a
decentralized derivatives platform. In comparison to SynFutures V1, SynFutures V2 provides a more
streamlined, easier-to-navigate user experience for both traders and liquidity providers, as well as more
trading products and features designed with increased capital efficiency. For traders, SynFutures V2

introduces Perpetual Futures, which is a never-ending futures contract with native permissionless
listing, guaranteed price convergence to spot index, and a forward-looking funding mechanism. For
LPs, SynFutures V2 will be the first AMM-based derivatives protocol to natively incorporate ranged
liquidity provision and limit orders, in addition to the vanilla AMM liquidity provision. The current
code base is well structured and neatly organized. Those identified issues are promptly confirmed
and addressed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

19/21 PeckShield Audit Report #: 2022-240

Public

References

[1] MITRE. CWE-1099: Inconsistent Naming Conventions for Identifiers. https://cwe.mitre.org/

data/definitions/1099.html.

[2] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[3] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[4] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

(’Race Condition’). https://cwe.mitre.org/data/definitions/362.html.

[5] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[6] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[7] MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/

361.html.

[8] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[9] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

20/21 PeckShield Audit Report #: 2022-240

https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/1099.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html

Public

[10] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[11] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[12] PeckShield. PeckShield Inc. https://www.peckshield.com.

21/21 PeckShield Audit Report #: 2022-240

https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About SynFutures V2
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Incompatibility With Deflationary/Rebasing Tokens
	Accommodation of Non-ERC20-Compliant Tokens
	Suggested Addition Of rescueToken() To SynFuturesV2Underlying
	Suggested Reentrancy Protection In Current Implementation
	Trust Issue Of Admin Keys

	Conclusion
	References

