
Public

SMART CONTRACT AUDIT REPORT

for

Oyster Aggregator

Prepared By: Xiaomi Huang

PeckShield
February 5, 2025

1/17 PeckShield Audit Report #: 2025-032

contact@peckshield.com

Public

Document Properties

Client Oyster
Title Smart Contract Audit Report
Target Oyster
Version 1.0
Author Xuxian Jiang
Auditors Daisy Cao, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 February 5, 2025 Xuxian Jiang Final Release
1.0-rc1 January 26, 2025 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/17 PeckShield Audit Report #: 2025-032

Public

Contents

1 Introduction 4
1.1 About Oyster . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improved Validation on Function Arguments . 11
3.2 Revisited getMidPriceAndBalance() Logic in DEX Adapters 12
3.3 Possible Fee Tier Inconsistency in ALBPoolAddress 13
3.4 Trust Issue of Admin Keys . 14

4 Conclusion 16

References 17

3/17 PeckShield Audit Report #: 2025-032

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
the Oyster protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Oyster

Oyster is a cutting-edge on-chain DEX Aggregator solution. Different from existing approaches, Oyster
does not calculate the pools and find-best-path logic off-chain. Instead, Oyster has an on-chain
pricing structure that can source liquidity from multiple DEX engines (via respective adapters) and
support multiple hops and splitted pools. The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of The Oyster Aggregator

Item Description
Issuer Oyster
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report February 5, 2025

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/SynFutures/oyster-aggregator.git (84a54f8)

And here is the commit ID after all fixes for the issues found in the audit have been checked in:

4/17 PeckShield Audit Report #: 2025-032

Public

• https://github.com/SynFutures/oyster-aggregator.git (be03ce6)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further

5/17 PeckShield Audit Report #: 2025-032

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/17 PeckShield Audit Report #: 2025-032

Public

deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/17 PeckShield Audit Report #: 2025-032

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/17 PeckShield Audit Report #: 2025-032

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Oyster protocol implementation. During the
first phase of our audit, we study the smart contract source code and run our in-house static code
analyzer through the codebase. The purpose here is to statically identify known coding bugs, and
then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 3

Informational 0

Total 4

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/17 PeckShield Audit Report #: 2025-032

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity
vulnerability and 3 low-severity vulnerabilities.

Table 2.1: Key Oyster Audit Findings

ID Severity Title Category Status
PVE-001 Low Improved Validation on Function Argu-

ments
Coding Practices Resolved

PVE-002 Low Revisited getMidPriceAndBalance()
Logic in DEX Adapters

Business Logic Resolved

PVE-003 Low Possible Fee Tier Inconsistency in
ALBPoolAddress

Business Logic Resolved

PVE-004 Medium Trust Issue of Admin Keys Security Features Mitigated

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/17 PeckShield Audit Report #: 2025-032

Public

3 | Detailed Results

3.1 Improved Validation on Function Arguments

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: OysterAggregator

• Category: Coding Practices [5]

• CWE subcategory: CWE-1126 [1]

Description

The Oyster protocol has an on-chain pricing structure that core OysterAggregator contract that is the
main entry for user interaction. In the process of examining the logic to return swapped tokens to
the user, we notice an issue that can better validate the input fee parameters.

In the following, we show the code snippet of the _routeWithdraw() routine. As the name indicates,
this routine is invoked after all swaps are completed and is used to transfer tokens to original receiver
and distribute fees to the protocol and the broker, if any. We notice the broker portion is calculated
via the the brokerFeeRate parameter (line 300) and is validated to be smaller than 10 ** 18 (line
301). Note the validation can be improved with the following statement, i.e, if (routeFeeRate +

brokerFeeRate >= 10 **18)revert LibAggregatorErrors.BrokerFeeRateOverflowed();.

292 function _routeWithdraw(address toToken , uint256 receiveAmount , bytes memory feeData
, uint256 minReturnAmount)

293 internal
294 returns (uint256 userReceiveAmount)
295 {
296 address originToToken = toToken;
297 if (toToken == _ETH_ADDRESS_) {
298 toToken = _WETH_;
299 }
300 (address broker , uint256 brokerFeeRate) = abi.decode(feeData , (address , uint256)

);
301 if (brokerFeeRate >= 10 ** 18) revert LibAggregatorErrors.

BrokerFeeRateOverflowed ();

11/17 PeckShield Audit Report #: 2025-032

Public

303 ...
304 }

Listing 3.1: OysterAggregator::_routeWithdraw()

Recommendation Revise the above-mentioned routine to thoroughly validate the given broker
fee.

Status The issue has been resolved in the following commit: d336fae.

3.2 Revisited getMidPriceAndBalance() Logic in DEX Adapters

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

As mentioned earlier, Oyster has an on-chain pricing structure that directly sources liquidity from
multiple DEX engines via respective adapters. In the process of examining current adapters, we notice
one common core function (to compute the intermediate price and pool balances) can be improved.

In the following, we use the UniV2Adapter as an example and show its implementation of the
related getMidPriceAndBalance() routine. This routine has a rather straightforward logic in computing
the swap price from the respective Uniswap pools and their balances. However, we notice the fee
adjustment logic can be improved. Specifically, when it is a buy operation, the fee adjustment
can be improved as price = price * 1e18 / (1e18 - feeAdjustment), not current price * (1e18 +

feeAdjustment)/ 1e18 (line 131).

106 function getMidPriceAndBalances(address pool , bool isBuy)
107 external
108 view
109 override
110 returns (uint256 price , uint256 token0bal , uint256 token1bal)
111 {
112 (uint112 reserve0 , uint112 reserve1 ,) = IUniswapV2Pair(pool).getReserves ();
113 price = uint256(reserve1) * 1e18 / uint256(reserve0);

115 // Get token decimals
116 address token0 = IUniswapV2Pair(pool).token0 ();
117 address token1 = IUniswapV2Pair(pool).token1 ();
118 uint8 decimals0 = IERC20Metadata(token0).decimals ();

12/17 PeckShield Audit Report #: 2025-032

https://github.com/SynFutures/oyster-aggregator/commit/d336fae

Public

119 uint8 decimals1 = IERC20Metadata(token1).decimals ();

121 // Adjust for decimals
122 if (decimals0 > decimals1) {
123 price = price * (10 ** (decimals0 - decimals1));
124 } else if (decimals1 > decimals0) {
125 price = price / (10 ** (decimals1 - decimals0));
126 }

128 // Adjust price for 0.3% fee
129 uint256 feeAdjustment = 0.003 e18; // 0.3% in 1e18 format
130 if (isBuy) {
131 price = price * (1e18 + feeAdjustment) / 1e18;
132 } else {
133 price = price * (1e18 - feeAdjustment) / 1e18;
134 }

136 token0bal = IERC20(token0).balanceOf(pool);
137 token1bal = IERC20(token1).balanceOf(pool);
138 }

Listing 3.2: UniV2Adapter::getMidPriceAndBalance()

Recommendation Revise the above-mentioned routine to properly factor in the fee parameter
for the intermediate price calculation. Note other adapters can be similarly improved, including
UniV3Adapter, AeroV2Adapter, AeroV3Adapter, PancakeV3Adapter, and ALbV3Adapter.

Status The issue has been resolved as the team confirms it is part of the design.

3.3 Possible Fee Tier Inconsistency in ALBPoolAddress

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ALBPoolAddress

• Category: Coding Practices [5]

• CWE subcategory: CWE-1126 [1]

Description

As mentioned earlier, Oyster may sources liquidity from multiple DEX engines via respective adapters.
In the process of examining the ALBV3Adapter support, we notice an inconsistency in the supported
fee tiers with the external AlienBase DEX protocol.

In the following, we show the code snippet from the getPools() routine, which supports four fee
tiers, i.e., 100, 400, 300, and 750. However, our examination on the AlienBase DEX code base indicates
the following supported fee tiers: 750, 3000, and 10000.

13/17 PeckShield Audit Report #: 2025-032

Public

52 function getPools(address factory , address tokenA , address tokenB) internal pure
returns (address [] memory pools) {

53 // Standard Uniswap V3 fee tiers
54 uint24 [4] memory fees = [uint24 (100), uint24 (400), uint24 (300) , uint24 (750)];
55 pools = new address [](fees.length);

57 for (uint256 i = 0; i < fees.length; i++) {
58 pools[i] = computeAddress(factory , getPoolKey(tokenA , tokenB , fees[i]));
59 }
60 }

Listing 3.3: ALBPoolAddress::getPools()

Recommendation Revise the above-mentioned routine to ensure the fee tiers in ALBV3Adapter

are consistent with the external AlienBase DEX.

Status The issue has been resolved in the following commit: 721db5b.

3.4 Trust Issue of Admin Keys

• ID: PVE-004

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [4]

• CWE subcategory: CWE-287 [2]

Description

In the Oyster protocol, there is a privileged account, i.e., owner. This account plays a critical role in
governing and regulating the protocol-wide operations (e.g., collect contract funds, configure token-
s/pools, and manage bots). Our analysis shows that this privileged account needs to be scrutinized.
In the following, we use the OysterAggregator contract as an example and show the representative
functions potentially affected by the privileged account.

79 function changeRouteFeeRate(uint256 newFeeRate) public onlyOwner {
80 if (newFeeRate >= 10 ** 18) revert LibAggregatorErrors.NewFeeRateOverflowed ();
81 routeFeeRate = newFeeRate;
82 }
83
84 function changeRouteFeeReceiver(address newFeeReceiver) public onlyOwner {
85 if (newFeeReceiver == address (0)) revert LibAggregatorErrors.FeeReceiverInvalid

();
86 routeFeeReceiver = newFeeReceiver;
87 }
88
89 /// @notice used for emergency , generally there wouldn ’t be tokens left
90 function superWithdraw(address token) public onlyOwner {

14/17 PeckShield Audit Report #: 2025-032

https://github.com/SynFutures/oyster-aggregator/commit/721db5b

Public

91 if (token != _ETH_ADDRESS_) {
92 uint256 restAmount = IERC20(token).universalBalanceOf(address(this));
93 IERC20(token).universalTransfer(payable(routeFeeReceiver), restAmount);
94 } else {
95 uint256 restAmount = address(this).balance;
96 IERC20(_ETH_ADDRESS_).universalTransfer(payable(routeFeeReceiver),

restAmount);
97 }
98 }

Listing 3.4: Example Privileged Functions in OysterAggregator

We understand the need of the privileged functions for contract maintenance, but at the same
time the extra power to the owner may also be a counter-party risk to the protocol users. It is
worrisome if the privileged owner account is a plain EOA account. Note that a multi-sig account
could greatly alleviate this concern, though it is still far from perfect. Specifically, a better approach
is to eliminate the administration key concern by transferring the role to a community-governed DAO.

In the meantime, the Config contract makes use of the proxy contract to allow for future upgrades.
The upgrade is a privileged operation and the management of the related admin key also falls in this
trust issue.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been mitigated as the team confirms that multi-sig will be adopted for
the privileged account.

15/17 PeckShield Audit Report #: 2025-032

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Oyster protocol, which is
a cutting-edge on-chain DEX Aggregator solution. Different from existing approaches, Oyster does
not calculate the pools and find-best-path logic off-chain. Instead, Oyster has an on-chain pricing
structure that can source liquidity from multiple sources (via respective adapters) and support multiple
hops and splitted pools. The current code base is well structured and neatly organized. Those
identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

16/17 PeckShield Audit Report #: 2025-032

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[6] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

17/17 PeckShield Audit Report #: 2025-032

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Oyster
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Validation on Function Arguments
	Revisited getMidPriceAndBalance() Logic in DEX Adapters
	Possible Fee Tier Inconsistency in ALBPoolAddress
	Trust Issue of Admin Keys

	Conclusion
	References

